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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 386k 

THEORETICAL CALCULATION OF THE POWER SPECTRA 

OF THE ROLLING AND YAWING MOMENTS ON A 

WING IN RANDOM TURBULENCE 

By John M. Eggleston and Franklin W. Diederich 

SUMMARY 

The correlation functions and power spectra of the rolling and yawing 
moments on an airplane wing due to the three components of continuous 
random turbulence are calculated. The rolling moments due to the longi- 
tudinal (horizontal) and normal (vertical) components depend on the span- 
wise distributions of instantaneous gust intensity, which are taken into 
account by using the inherent properties of symmetry of isotropic turbu- 
lence. The results consist of expressions for correlation functions or 
spectra of the rolling moment in terms of the point correlation functions 
of the two components of turbulence. 

Specific numerical calculations are made for a pair of correlation 
functions given by simple analytic expressions which fit available experi- 
mental data quite well. Calculations are made for four lift distributions. 
Comparison is made with the results of previous analyses which assumed 
random turbulence along the flight path and linear variations of gust 
velocity across the span. 

The rolling moment due to lateral (side) gusts, which is small, is 
expressed in terms of the instantaneous value of the gust near the center 
line of the fuselage, so that the effect of spanwise variation in gust 
intensity is ignored. The yawing moments are considered to be propor- 
tional to the rolling moments with the constants of proportionality given 
by simple aerodynamic relations. 

INTRODUCTION 

The gust velocities acting on an airplane flying through turbulent 
air are functions of position or time known only in a statistical sense. 
Consequently, aerodynamic forces and moments produced by the lifting 
surfaces of the airplane can be known only in a statistical sense.  If 
the statistical characteristics of the turbulence are assumed to be 
invariant with position along the flight path, flight through turbulent 
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air may be considered to be a stationary random process and the mathe- 
matical techniques developed for such processes (see ref. 1, for instance) 
may then be used in this problem. 

This approach has been adopted in many papers on this subject, among 
them references 2 and 3-  Inasmuch as in these papers the motions and 
forces associated with the longitudinal degrees of freedom were of primary 
interest, the assumption was made, implicitly, that the gust intensity is 
uniform along the span at any instant. However, for the problem of ana- 
lyzing the motions and forces associated with the lateral degrees of free- 
dom, this assumption is inadequate, inasmuch as it implies that the verti- 
cal and horizontal gusts produce zero rolling and yawing moments on the 
wing. This problem has been treated in references k  and 5 and- elsewhere 
on the basis of the assumption that at any instant the gust intensity 
varies linearly across the span. 

A fundamental method of accounting for the lift on a wing due to 
random variations of the gust velocities in both the flight-path and the 
spanwise directions is given in reference 6 for the longitudinal response 
of an airplane in atmospheric turbulence. The approach is based on the 
assumption that the turbulence is axisymmetric (according to ref. 7)> so 

that, at any arbitrary time or position in the turbulence, the statistical 
characteristics of the turbulence encountered by an airplane do not depend 
on the heading of the airplane. On the basis of this assumption, the 
variation of gust intensity across the span can be related to the varia- 
tion of the gust intensity along the flight path. 

In the present paper the approach of reference 6 is extended to the 
calculation of the rolling and yawing moments on a wing due directly to 
vertical gusts, longitudinal gusts (hereinafter referred to as horizontal 
gusts), and lateral or side gusts. These moments are required as a first 
step in calculating the motions of a complete airplane in atmospheric 
turbulence; the moments due to the motions caused by these input moments 
can be calculated by conventional methods and will not be considered 
herein. 

In the first part of the paper, a theoretical analysis is made 
defining the power spectra of the rolling and yawing moments of a wing 
in terms of the statistical characteristics of the atmospheric gust veloc- 
ities. By using an analytical expression to define these characteristics, 
a numerical solution of the lateral moments is presented in the last 
part of the paper. 
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SYMBOLS 

a = ß'l/l + (k')2 

b wing span 

c wing chord 

c wing mean aerodynamic chord 

E(k), K(k)    complete elliptic integrals of the second and first kind, 
respectively, of modulus k 

f longitudinal correlation function for isotropic turbulence 

F Fourier transform of f 

g lateral correlation function for isotropic turbulence 

G Fourier transform of g 

h indicial-response function of time only 

h1 indicial-response function of time and displacement 

I Fourier transform of two-dimensional correlation function 

i-vFi 

k modulus of elliptic integrals,  - 
2 + T\ 

k' reduced frequency,  aL/u 

KQ, K]_ modified Bessel functions of the second kind 

KQ, K^ incomplete modified Bessel functions of the second kind 

I section lift 

L integral scale of turbulence 

Mx rolling moment 

p rolling velocity 
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q dynamic pressure 

r yawing velocity (used only in stability derivatives); 
linear displacement between any two points 

S wing area 

t time 

U mean forward velocity 

UT displacement along the flight path 

v component of airplane velocity along positive Y-axis 

ug> vg> wg three components of gust velocity (see fig. 1(a)) 

X, Y, Z reference axes (see fig. 1(a)) 

x chordwise distance 

y spanwise distance 

£v = y2 - yi 

y* nondimensional spanwise coordinate, -*— 
* b/2 

a angle of attack, radians 

ß' = b/L 

7 span influence function 

T integral weighting function 

A = UT/L 

T\ dummy variable of integration, y2* - y-j* 

p atmospheric density 

T dummy variable of time 

0) circular frequency, 2rt/Period 
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4 
Cl rolling-moment coefficient, 

Rolling moment 

qSb 

Cn yawing-moment coefficient, 
Yawing moment 

qSb 

ÖCn 
Cnp - 

2U 

% = 
3^ 

2U 

^nr -   

2U 

<"W 
öcz 

ir 

a^ 
2U 

ÖCn 
^np 

" öl 
u 

ÖCj 

°*ß öl 
u 

* correlation function 

power spectral density 
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Subscripts: 

o trim value 

g gust component 

A bar over a quantity denotes the mean value of the quantity. The 
absolute value of a quantity is denoted by | |. 

THEORETICAL ANALYSIS 

Preliminary Considerations 

In this section expressions are derived for the power spectra of 
the rolling and yawing moments of an unswept airplane wing or thin lifting 
surface of arbitrary plan form due to flight through random atmospheric 
turbulence. Essentially, the procedure consists of expressing the rolling 
moment at any arbitrary position along the flight path in terms of the 
gust velocity at that position, establishing the correlation function 
between the rolling moments at any two points along the flight path, and 
transforming this correlation function into an expression for the power 
spectral density. The power spectrum of the yawing moment is then related 
to that of the rolling moment through simple aerodynamic relationships. 

Assumptions.- The following assumptions are made in the analysis: 

(1) The turbulence is homogeneous and isotropic; that is, the statis- 
tical characteristics of the turbulence are invariant under a translation 
or rotation of the space axes (although the results obtained for the verti- 
cal component of turbulence require only the somewhat less restricting 
assumption of axisymmetry) . 

(2) Time correlations are equivalent to space correlations along 
the flight path - an assumption usually referred to as Taylor's hypothesis. 
(See ref. 7.) 

(3) The chordwise penetration factor (the indicial-response influence 
function) for the rolling and yawing moments can be expressed as a product 
of a function of distance along the flight path (or time) only and distance 
along the span only. 

(k)  The wing considered herein is relatively rigid and, as a result 
of the turbulent velocities, performs small motions about a mean steady 
flight condition. 

The implication of these assumptions and the limitations they impose 
on the results of the analysis are discussed in a subsequent section of 
the paper. 
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Coordinate system and gust components. - The system of axes and the 
local velocity field relative to the lifting surface are shown in fig- 
ure l(a). The velocity at each point in the field is resolved into com- 
ponents lying in the three planes of an orthogonal set of axes, the X-axis 
of which is tangent at every point to the flight path. Throughout this 
paper these three components are designated as follows: The component 
alined with the X-axis is referred to as the horizontal gust ug; the 

component alined with the Y-axis is referred to as the side gust Vg; 

and the component alined with the Z-axis is referred to as the vertical 
gUSt  Wg. 

As the wing moves through the local velocity field, the random vari- 
ations in the horizontal and vertical gust components are defined both 
in the flight-path direction and in the spanwise direction at every posi- 
tion along the flight path. Random variations of these gust components 
across the chord are taken into account by indicial-response functions 
and, hence, need not be considered separately. 

The side gust component of the gust velocity field is treated in 
only a limited manner. Neither the chordwise nor the spanwise variations 
of Vg are considered along the flight path; rather,  vg is assumed to 

act on the wing as a point velocity with a variation only along the 
flight-path direction. Contemporary aircraft exhibit such wide varia- 
tions in distribution of dihedral across the span that it is doubtful 
that a generalized analysis could be utilized.  The point or centroid 
analysis should be fairly accurate when the dihedral distribution is 
predominant over only a small section of the span near the fuselage. 
Such a distribution is exhibited by an unswept wing with zero geometric 
dihedral mounted very high or low on a fuselage.  For a wing with zero 
aerodynamic dihedral, this component could be neglected completely. 

Definition of gust correlation functions.- In order to define random 
variations of the gust velocities both along the flight path and across 
the span of the wing as it moves through the turbulence, it is necessary 
to define the correlation between any two velocities in the gust field 
through which the wing passes. The space correlation function of a veloc- 
ity u is defined in terms of the distance r as 

,X 

X—>°o 2X-   J-X 
$u(r) = lim i- I"    u(rx) u(r1+r) dx± (l) 

Von Karman and Howarth (ref. 8) have shown that, in homogeneous isotropic 
turbulence, the correlation between two velocity vectors a distance r 
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apart can be defined in terms of two scalar functions f(r)  and g(r) 
and that this relationship is invariant with respect to rotation and 
reflection of the coordinate axes. These one-dimensional correlation 
functions relate the paired velocity components obtained by resolving 
the velocity vector at any two points a distance r apart into two parts; 
The pair lying along the straight-line path between the points are known 
as the longitudinal components and the pair normal to the straight-line 
path are known as the lateral components. These two pairs of components 
are pictorially shown in figure l(b). Such velocity components may be 
measured in wind tunnels downstream of a grid mesh.  (See ref. 9-) 

In reference 8, it is further shown that these correlation functions 
are interrelated by the differential equation 

LMill+  f(r) = g(r) 
2 dr 

(2) 

By defining the variable r in 
using the correlation tensor of 
of the turbulence as it affects 
and g(r). The variable in the 
and vertical gust components in 
is given simply by 

the coordinate system of this paper and 
reference 8, a two-dimensional analysis 
the wing may be made in terms of f(r) 
correlation functions of the horizontal 
the two-dimensional XY-plane of the wing 

r = \J(te)2  + (Ay)2 = |/< (UT)2 + M' (3) 

The correlation function of the horizontal gust components, as 
derived from the correlation tensor of reference 8, is defined in terms 
of x- and y-components of the present analysis by the formula 

cu. g 
$ (£*,£&)  =  ug < 

(Ax)' 

(Ac)2 + (Ay)2 

(Ax)2 + (Ay)2 

(Ay): 

(A<)2 + (Ay)2 

{(Ac)2 + (Ay): (*) 

The relationship between the components is shown schematically in fig- 
ure 2(a). 
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In a like manner, the correlation function of the vertical gust 
components affecting the wing, given in terms of the mean-square value 

of the vertical gust velocity wg
2, may be seen to be simply 

$w (Ax,Ay) =  Wg2 g ^(AX)2 + (AyV (5) 

For the case of side gusts acting on a wing, the correlation func- 
tion would be defined in terms of Ax and Ay if the spanwise correla- 
tion were considered.  (See fig. 2(b).)  Inasmuch as the side gust is 
considered to act only at a point on the span, Ay is zero, and the 
correlation function for the side gust in terms of its mean-square value 
becomes 

f (Ax) = vg
2 g(Ax) (6) 

Although the mean-square value of each of the three gust components 
is given separate identity, under the assumption of isotropy 

Ug2 = Vg2 = Wg2 (7) 

With the gust-velocity correlation functions thus defined, the 
forces and moments due to antisymmetric components of the gust-velocity 
field acting on a wing passing through that field may be derived in terms 
of these correlation functions. 

Rolling Moment Due to Gusts 

Vertical gusts.- The instantaneous wing rolling moment due to vertical 
gusts can be written in terms of an indicial-response influence func- 
tion h'(t,y)  as 

poo pb/2 . 
Mx(t) =  /  /    h'(t!,y) wg^t-t^yj dy dtx        (8) 

According to assumption (3) of the section entitled "Preliminary Con- 
siderations" (see also the argument presented in ref. 6), the func- 
tion h'(t,y)  can be expressed in the form 
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h'(ti,y) = h(t^ 7(y) (9) 

where y(y)     is a steady-state span influence function and h(ti) con- 
tains the unsteady-lift effects. The rolling moment can then also be 
written as 

,b/2 

-b/2 
Mx(t) =  /  h(ti) dt! / '^  7(y) Wg^t-t^y) dy      (10) 

If the correlation function for the rolling moment is calculated 
from equation (10) and a power spectrum for the rolling moment is obtained 
by taking the Fourier transform of the correlation function, the resulting 
expression may be shown to consist of a product of two functions: One 
function is the result obtained from quasi-steady considerations alone, 
and the other is the absolute squared value of the unsteady-lift function 
for sinusoidal gust penetration such as that given by Sears in refer- 
ence 10. Consequently, consideration will be confined to an analysis 
using quasi-steady expressions for the rolling moment; that is, the lag 
in buildup of lift across the chord of the wing due to the gusts is not 
included. 

In quasi-steady flow, the rolling moment of a wing due to a variable 
angle-of-attack distribution across the span is given by 

MX = qSbCj 

^b/2 

-b/2 
Uy) 

*=«g(y) ct= 
y dy (11) 

where section lift 

l(y) = cz(y) q c(y) 

and local angle of attack due to gusts 

ccg = Wg/U 
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Now, one theorem of linearized airfoil theory states that the lift (or 
rolling moment) on a wing due to an arbitrary spanwise angle-of-attack 
distribution is equal to the integral over the entire wing of the product 
of the spanwise lift distribution due to a unit constant (or linearly 
varying) angle of attack and the given arbitrary angle-of-attack distri- 
bution. Hence, the rolling moment is also given by 

qSbCZ = 
pb/2 

-b/2 

oc=y 
Uy)    otg(y) dy (12) 

This theorem is valid not only in steady but also in indicial flow. 
(See reciprocity theorems of ref. 11.) 

When the indicated substitutions are made, the rolling-moment coef- 
ficient along the flight path is 

Ci(x) 
>b/2 

-b/2 

c^(y) c(y) 

"C*p 5 

ot=y 
w, ;(x,y) 

U 
dy 

kv 
- r(y*) wg(x,y*) dy* (13) 

where y* = -*— and the steady-state lift distribution 
b/2 

r(y*) 
cz(y*).c(y*) 

-C,  c 

cc=y* 

(1^) 

pertains to a linear antisymmetric angle of attack across the span. It 
may be seen that, by virtue of its definition, y(y*) must satisfy the 
relation 

/ 7(y*) y* dy* = 2 (15) 
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Horizontal gusts.- In analogy to the analysis of the preceding sec- 
tion, consideration will be confined to the quasi-steady case. When 
stability axes are used, a change in forward velocity at any spanwise 
station increases the magnitude but does not change the direction of the 
lift and drag vectors. Thus, the horizontal-gust contribution to the 
dynamic pressure is 

Aq(y) = | p < [ug(y) + u]2 - U2 

= \ P(ug2 + 2Uug) 

= 2% 
My) 
u 

under the assumption that Ug « U. When this linearized approximation 

is used, the lift on each section is proportional to the local angle of 
£L"G"GQ,CK. • 

'(Us) .. 2„ ^8 

KM      " Wn 

The rolling-moment coefficient due to horizontal-gust velocities is 
thereby defined as 

Ci(x) = —£  /  7(y*) ug(x,y*) dy* 
2U    J _2_ 

(16) 

where now 

7(y*) 
cl(y

#) c(y*) 

-d  c 

2cxo^-y* 

(17) 

The only difference in evaluating 7(y*) for horizontal and vertical 
gusts lies in the definition of the parameter having a variation of y* 
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across the span; for the vertical gust, that parameter is taken as the 
additional angle of attack and, for the horizontal gust, that parameter 

is 2oo —• The condition that ~0   y 

f  7(y*) y* dy* = 2 
0 

remains unchanged. 

Antisymmetric Span Influence Function y(y*) 

The antisymmetric span influence function 7(y*)  is defined over 
the span so that any given distribution of y(y*)    will produce a unit 
rolling moment. These distributions refer to the span loading due to 
a linear angle of attack a = y* for the vertical gust or a linear 

leading-edge velocity 2OQ — = y* for the horizontal gust. Four basic 

variations of ?(y*)  have been considered with the proper constants so 
that equation (15) is satisfied.  The equations for the y(y*)     varia- 
tions considered are given in table I and plots of these variations are 
shown in figure 3(a). The names given to the four distributions obtained 
by rolling the wing refer to the distributions which would be produced 
by a uniform angle of attack. 

Correlation Function of the Rolling Moment 

Vertical gusts.- The autocorrelation function of the rolling moments 
due to vertical gusts at any two stations along the path of the wing is 
defined as 

1   'x 

*Cj(*2-*i) " x^ iJ./'(V) c*(xi) toi     (18) 
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With the substitution of the expressions for CT(X2)  and C^fx^) as 

given by equation (13), the correlation function of equation (18) becomes 

x      PXCJ  
2     ol pi 

5Cl(
x2-*l)  = ^ ä 7_x ^ 7.! 7(yi#) W8(Xl'yl*) ^1*7 _!  Ky2*)  M*2'*2*) <*2* ^ 

= ^   Zi£  K^M^*) xi^ £   Ix **{W)  ^(^2*)   *1 <*1* ^2* 

Oi2      „1    «I 
=  rf#   /-i/i 7M   ^  ^(X2-Xl'y2*-^)  ^1* ^2* <«> 

where it is assumed that the functions are convergent under either order 
of integration. An expression is thus obtained for the correlation func- 
tion of rolling moment in terms of the correlation function of vertical- 
gust velocity.  In equation (19), 

$Wg(x2-xi,y2*-yi*) = um ^ J      Vg(xi,Vl*)   vg(x2,y2*) cb^ 
X—»00 « vj _x 

is the same as the two-dimensional correlation function defined earlier 

as equation (5) with x? - x-. = Ax and y?* - y-i* = Ay* = -^-. 
x        b/2 

By the proper substitution of variables, the double integrals of 
equation (19) may be separated into the single integral of the product 
of the integrated weighting functions of /(y*)  and the correlation 
function fv .     Thus, with the substitution of 

x2 - Xl = UT 

y2* " yl* = n 
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equation (19) becomes 

f    (UT) = —J2- 
1 8ir Jo     s 

(20) 

where 

r(ri) = 
.l-TJ 

r(yi*i y fol*+*\)  äy-L* (21) 

and 

$w (UT,TI) = wg2 g I^MW (22) 

Equation (22) may be recognized as being equivalent to equation (5)- 

Horizontal gusts.- In an identical manner, the autocorrelation func- 
tion of rolling coefficient due to horizontal gusts at any two stations 
along the path of the wing is derived by use of equations (16) and (l8): 

,X 
^(x2"xl) = 1±ai    — X—*» 2X J_x 

:(x2) cz(xi) ^1 

°*2%2 r1 -pl 

—7T- J i J i y{y±*) ?(y2*) ^ug(
x2-xi^2*-yi*) dyi* ^2* 

With the same change of variables as in the preceding section, 

$CZ(UT) 
OQ2^ 

2UC r(Ti) $ug(UT^) dTi (23) 
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where 

$ll„(UT,Tl) = Ug2 < 
(UT)' 

(Ux)2 + (^ 

(UT)2 + fr 

~2~ 

(u,)2 ♦ ^ 

g (UT)' brj (24) 

and equation (24) is now the equivalent of equation (k). The integral 
weighting function r(f)) is the same for both the horizontal- and the 
vertical-gust contributions to their rolling-moment correlation functions. 

Integral Weighting Function T(r\) 

The integral weighting function T(t])    as defined by equation (21) 
has been evaluated for the four distributions of 7(y*) given in table I. 
These values are listed in table II and plotted against i\    in figure 3(b) 
It may be shown that the nature of the function is such that the 
relationship 

r(T)) dt] = o (25) 

must be satisfied for any variation of T which pertains to an anti- 
symmetric variation of ?(y*)• In table II the elliptic distribution 
is given in terms of K(k)  and E(k), which are complete elliptic inte- 

2 - -n 
grals of the first and second kind, respectively, of modulus k = . 

The derivation of the elliptic weighting function is included in the 
appendix of the paper. 

Power Spectra of the Rolling Moment 

The power spectrum of the rolling-moment coefficient C^ is defined 

as the Fourier transform of the autocorrelation function of Cj: 
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$c (0) = -i- /  $c,(Ur) e u  d(UT) (26) 
1   ' *u J-00 l 

For the vertical gusts, the power spectrum of the rolling-moment 
coefficient may be found by substituting the derived relationship for 
$r>  (UT) given by equation (20) into equation (26): 

2 
C|    p 00  I^UT  p 2 

»c^) = -^r   /    e" u     /    r(n) fwCT(
UT>Ti) dTi d(UT) 

3    ^ -co       ' d 0 6rtU- 

n     2 Llv P2                    poo      _j_Q[JT 

_i- /      r(T|)   /      e    U      tf    (ür,T))  CL(üT)  du 
8*U5 J0              J-                   WS 

°\   fZ r(,) iwfe^ *, (27) 
8rtU 3   ^o \U 

Changing the order of integration here is permissible inasmuch as the 
integrals of the correlation function of    wg    are convergent in both    Ut 

and    T|.     The  integral    Iw    is defined as 

/     \ P°°    -i^UT 
Iwfe^j   =   J      e    U      $wg(UT,ri)  d(UT) (28) 

Similarly, the power spectrum of rolling-moment coefficient due to 
the horizontal component of gust is obtained from the substitution of 
equation (23) for the term $c (UT)  appearing in equation (26): 

o^2Ci 2  p2       /  \ 
«c U) = -2-JL / r(ti) iJf.,A dr,        (29) 

1 2*U5  J0        VU / 



18 NACA TN 38614- 

where the integral Iu in equation (29) is defined as 

KH 
-i^jT 

e U  '^(UT^) d(Ur) (30) 

Thus, for two of the three components of turbulent gust velocities, 
the power spectrum of the rolling-moment coefficient is dependent on the 
integration of a function of the lifting distribution of the wing times 
a function which represents the Fourier transform of the correlation 
function of the vertical and horizontal gust components over the wing 
span. 

As previously stated, these results are based on quasi-steady con- 
siderations. Unsteady-lift effects can be taken into account simply by 
multiplying the power spectral density of the rolling moment due to each 

2 
gust component by the function 

given in reference 10. 
•£) , where cp is the Sears function 

Approximation for Side Gusts 

As pointed out previously, the side gust is treated here only in an 
approximate manner; that is, the spanwise effect is neglected. Based on 
this approximation, the rolling-moment coefficient is defined as 

Vß(Äx) 

The correlation function is defined by 

%%2 

T (UT) = :— g(UT) (52) 

and the power spectrum is defined by 

%v 
*c,(a>) = — GM (33) 

1 U2 
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where 

G(o)) = — /  e U  g(Ut) d(UT) (3*0 
JtU J _„ 

Relations Between the Yawing and the Rolling Moments 

No attempt is made herein to calculate directly the yawing moment 
due to atmospheric turbulence. Because of the more complicated nature 
of the phenomena which give rise to drag, as compared with those which 
give rise to lift, such an undertaking would be quite difficult. Further- 
more, in view of the fact that the yawing moments on the wing due to tur- 
bulence are relatively small, a detailed analysis would not generally 
be warranted. In this section, therefore, an approximate procedure is 
outlined for obtaining the yawing moments from the rolling moments. 

The yawing-moment coefficient due to sideslip can be expressed in 
the form 

Cn = Cnp(a) ß 

where,   in this case,    a    is the sum of the trim angle    OQ    and the 

wg instantaneous mean vertical-gust angle    -a,  and where    ß    is the instan- 
vT 

taneous mean side-gust angle    —,   so that 
U 

Cn - Cnploo)    „ + \ ^ „   „ 
°o 

where the second term is of higher order and is neglected. Similarly, 
differences in vg along the span give rise to higher order terms. 

The rolling moment can be expressed in the same form, so that the 
relationship between the yawing and rolling moments due to side gusts 
is given by 

(35) 
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Actually, this contribution to the yawing moment is generally negligible 
and is included here primarily for the sake of completeness. 

For the yawing moments due to vertical and horizontal gusts, similar 
reasoning may be employed. The yawing moment in these cases arises from 
the antisymmetric part of the instantaneous angle-of-attack distribution 
due to turbulence, as does the rolling moment, so that the two moments 
may be expected to be approximately proportional to each other; that is, 

nT 
Cn(Wg) = \c7'  °l(Wg) (36) 

Cn(ug) = 
■^nr 

^7 C*(uK) (37) 
,Qo 

In essence, these relations imply that the yawing moment due to a given 
instantaneous spanwise gust distribution is the same as the yawing moment 
due to a linear gust distribution which has the same rolling moment.  The 
deviation of the actual distribution from a linear one results in small 
differences in the vortex field and, thus, in small differences in the 
induced downwash. These differences lead to a contribution to the yawing 
moment which is believed to be small and, hence, has been ignored. 

In terms of their power spectra, the yawing moments are'defined as 

°Cp(u>) ■>ns 

*Cn(o)) 

fyvM un wn 

nn 

$U 

^(^ 

*c7(<»>) 

% 

^M 

u„ 

w, g 

(38) 

The power spectra of the rolling moments are defined in the preceding 
sections. 
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APPLICATION 

Approximations to the One-Dimensional (Point) 

Correlation Functions 

In order to evaluate the effects considered in the preceding part 
of the paper, calculations will now be made by using the results derived 
therein. These calculations will be based on a simple analytical expres- 
sion for the longitudinal point correlation function which has been sug- 
gested in reference 12 on the basis of measurements in wind tunnels: 

f(r) = e L (39) 

where L is the longitudinal scale of turbulence defined for any longi- 
tudinal correlation function f(r) by 

poo 

L =  /  f(r) dr (kO) 

The characteristics of clear-air turbulence measured in the atmosphere 
(ref. 13) may be shown to be reasonably well represented by equation (39) > 
with a value of L of approximately 1,000 to 2,000 feet. There are some 
theoretical objections to this function - primarily the fact that it has 
a nonvanishing slope as r—^0    and, hence, that the associated power 
spectrum does not decrease rapidly enough for very short wavelengths. 
These conditions imply that the mean square of the derivative of the gust 
velocity with respect to the space coordinate is infinite. However, from 
available measurements on atmospheric turbulence, it appears that equa- 
tion (39) remains valid to distances which are small compared with the 
span of the airplane (on the order of several inches), and the behavior 
of the spectrum at very short wavelengths is relatively unimportant because 
airplanes cannot respond to them to any appreciable extent. Therefore, in 
the absence of more reliable information all calculations described in 
this paper are based on equation (39)« 

The corresponding lateral correlation function related to f(r) by 
equation (2) is found to be 

g(r) = i . JLLLe L (1,1) 
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A plot of the functions given by equations (39) and (kl)  is shown 
in figure k.    Their respective power spectra, denoted by G(k') and 

F(k') where k' = ^, are given by 

F(k') = — 
«U 

1+ (k')' 
(te) 

G(k   L. l + 3(k')2 

(*3) 

[l+ (k')2]' 

These power spectra are plotted to a logarithmic scale in figure 5, where 
it may be noted that the asymptotic slope as k'—>» has a value of -2.0. 

Calculations for Vertical Gusts 

Rolling-moment correlation function.- When equation (k-l)   is substi 

tuted into equation (22) with r j(«T,2 

tion defined by equation (22) becomes 

+ | —3-) , the correlation func- 

$WJUT,TI) = Wo - #-'2 ♦ (£)' 
U)2

+m 
\2j (IA) 

Inasmuch as the evaluation of the rolling-moment correlation function, 
as such, is not necessary to the analysis of this paper, only limited 
consideration is given to the calculation of autocorrelation functions. 
Equation (20) has been evaluated in closed form for the case of the 
rectangular distribution of the span influence function 7(y*)  as given 
in tables I and II: 
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5wg2ciP
2 rzi i   (UT) = JliL. /  (4 - 6,2 + ,3) 

1 im2     Jo iK*(fJ :»K*& dT) 

Ü!^P!   H(X2 + 6 + P'
2)pT7 e"^ + (l2A2 - p- V + A* l^2)e-^ 

ß'  U< 

(^3 + 12A2 - 3P'2A2 + 24A + 2^e"A + ß'\ K-^ß',*)  - A^(ß',A) (Vj) 

where KQ and KT. are defined in reference 6 as incomplete modified 
Bessel functions where 

^ osinh -1- — 
Kv(ß',A) =  /      A e"A cosh 9 cosh v9 d6 m 

and 

ß' = * A = UT 

These two parameters represent the ratios of the distances b and UT 

to the integral scale of turbulence L. The parameter ß' reflects the 
size of the wing span relative to the characteristic size of the turbu- 
lence and, as such, is one of the more important parameters appearing in 
all the calculations involving spanwise correlation.  It effectively 
scales the magnitude and shape of the correlation functions and power 
spectra and, in the limit as ß'—>0, the equations for the antisymmetric 
moments likewise go to zero inasmuch as no rolling or yawing moment will 
exist when a finite span shrinks to a point. 

The parameter A is a measure of the flight-path distance relative 
to the characteristic size of the turbulence and, in the limit as A—^0, 
the correlation function must reduce to the mean square value of the 
rolling-moment coefficient; hence, 

Cl2 = *Cl(
A = °) 

3wg ClV 

i'V 
3ß' + 12ß'2 + 24ß' + 2U)e_|3' + ß'5 - 24 (VT) 
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Inasmuch as no adequate tables appear to be available for the func- 
tions KQ and K^, a numerical evaluation of equation (45) has not been 

made. However, an analysis of this correlation function with other 
approximations for f(r)  indicates that the effect of span loading is 
minor and that a reduction in ß'  attenuates the correlation function. 

'Ü5 Evaluation of Iw — ,r\ For the vertical gust component, the inte- 

gral definition of IW(-,T]| is given by equation (28) whereas $ (UT,T)) 
\U / g 

is now defined by equation (44). The indicated integration may be per- 
formed in closed form as a function of T) and the reduced frequency 
parameter k'. Thus, 

Mü'11 *L* 
.$* 

Vg^- 

ß'^ 

1 + (k')2 
Ko 

ß^l 
2 

^ - £\H2 * (? ■li^Hf)' 
d(UT) 

^1   +   (k-)S 

ß'n 
2 L 

1 + 3(k')2 

! + (**) 
^2 

,13/2 
Kl 

ß'n Vll1 + (k') • \2 (W) 

where 

k' = 
U 

and KQ and K-,  are modified Bessel functions of the second kind of 

order 0 and 1, respectively. 

A plot of equation (48) is shown in figure 6 as a function of the 
frequency parameter k', for a range of values of ß'T]/2 from 0 to 1.0. 
Although the physical significance of the function Iw is rather obscure, 
the plots are useful in the subsequent numerical integration of the prod- 
uct of Iw and T. 

• Power spectrum of rolling moment.- In general, the analytical solu- 
tion of equation (27) for the power spectrum of the rolling-moment coef- 
ficient due to vertical gusts, when possible, is a tedious process. 
Numerical integration by means of either Simpson's rule or some inte- 
gration process of higher order is generally preferable to integration 
in closed form. However, the analytical evaluation of equation (27) for 
the case of a wing with rectangular span loading is given here in order 
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to illustrate some of the characteristics of the equations. After the 
indicated substitutions are made, equation (27) becomes 

6wrr2LCi p2   , 
*Cl&) - p    /    U - 6n + n? 

&ru5        Jo    V 

for which the integrated solution is 

77^?^ ^ [l+ (k'): 
dr] 

•ci^') 
l^LCj 2r/1,    2 

P '-3(k')2  /      Ko(x)  dx +    hk + l6r2 

irtAA 

1 -   DO' Ko(a) + 

[i+0O2]' 

.'[3 -  (k1)2] + 32a[l -  (k')2]l Kl(a)  + 2a2[l - 3(k')2]   - 52[l -  (k')2] ] (^9) 

where a= ß'Wl + (k1)2,  k' = —, and Ko(a)  and ^(a)  are modified 

Bessel functions of the second kind of argument a.  Equation (k-9)   is 
plotted in figure 7(a) as a function of k'  for a range of ß'  between 
0.03125 and 1.0. 

For small values of frequency ü) (and hence k') or scale factor ß', 
equation (k9)  becomes poorly behaved because the solution takes the form 
of small differences of high-order terms. The reason for this may be seen 
by expanding the Bessel functions in their power-series form and grouping 
like powers of the variable a. The coefficients of the first three terms 

of the power series a , a" ,  and a0 (which are the predominant terms 
for values of a < l) are identically zero.  Under these conditions, small 
computing errors or the lack of significant figures will cause large inac- 
curacies in the numerical evaluation of the function. 

The difficulties just described may be overcome somewhat by evaluating 
equation (49) for the limiting case of k1 = 0: 

l8wg
2LCz 

$P (k'=0) = -     
P 

jtU-'ß :5n ^  LV 
(ß^ + löß'^Kotß') + (6ß'5 + 32ß')K1(ß') + 2ß'

2 - 32 

(50) 

■^Values for the integral of KQ may be found in several publica- 
tions, one of which is reference Ik,  table 2 (Zahlentafel 2).  A com- 
prehensive listing of other available mathematical tables including these 
Bessel functions is given in reference 15. 
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When the Bessel functions are again expanded in powers of ß', only several 
terms are needed to evaluate the function at small values of ß'. As before, 
the coefficients of all negative orders and the zero order of ß' are 
identically zero.    » 

The physical necessity that, as the span b approaches zero, the 
expression for the power spectrum of the rolling-moment coefficient must 
also approach zero is satisfied by equation (J+9) inasmuch as the lowest 
order term with a nonzero coefficient appearing in the equation is a^ 
(as pointed out above); that is, for b—X3, 

$Q7(CD) « (Constant) a^ = 0 

In order to compute OQ  for the other three types of distribution 

of wing loading given in tables I and II, a numerical-integration process 
involving Simpson's three-point rule of integration was employed. The 
power spectra thus obtained are plotted in figures 7(b)>   (c)>  an^-  (d-)- 
This method was also used for the rectangular lift distribution and was 
found to give good agreement with the analytical results. 

It is of interest to note that whereas the power spectra of the 
vertical gust approach a logarithmic decrement of -2 (see fig. 5), the 
rolling-moment power spectra shown in figure 7 approach a decrement of -3- 
At the low-frequency end of the spectrum (long wavelengths) the power 
appears to approach a constant which is zero only when ß', the ratio of 
span to scale of turbulence, is zero. 

Some simplified approaches to the calculation of the rolling power 
of gusts (for example, ref. k)  lead to the result that the spectrum of 
the rolling power of the vertical gust appears as the first derivative 
(slope) of the vertical-gust spectrum. As may be seen from figure 7, 
such an approximation is justified only in a very small band of frequencies 
for wings having small values of ß'. 

Calculations for Horizontal Gusts 

Rolling-moment correlation function.- When the expressions for f(r) 
and g(r) given by equations (39) and {kl)  are substituted into equa- 

tion (2k)  with r = 1/(UT) + (^IL) , the one-dimensional correlation func- 

tion for horizontal gusts becomes 
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$UCT(
UT
^) = ui ■g 1 - -^ !             (ff 

" f(w)2 + (£ ?)1 

i^)^)' 
(51) 

The correlation function of rolling moment is obtained by inserting equa- 
tion (51) into equation (23) and integrating. For a rectangular distri- 
bution of y(y*), 

$c (UT) 
ivgW^iv2   r2 

u2 
f     U - 6n + Tl3) 
'0       \ ' 

1   -   — 
2L 
X ffi 

<*>2 ♦ (£ 

4f<«Mf) dT) 

2img
2o0

2ctp
2 

T^ß .1+ 

,.3 
WCi(ß',A)  + 2 (ß,2 + 6)\/ß'2 + A2 + 3ß,2 + 

2A2 + 6 
2    2 

Vß'+A   - U(x2 + 5X. + 3)e-X (52) 

and 

48ug2a02C, 

'Z     - 

uV4 (ß'5 + 3ß'2 + 6ß« + 6)e" ß' - 6 (53) 

As  in the case of the vertical gust,  the correlation function has not 
been calculated for the other three distributions of    y(y*)    for the 
reasons already given. 

Evaluation of    Iu(—j^V" ^he evaluation of    Iu,  as defined by equa- 

tion (30)  for the case of the horizontal gust,   is given by the expression 
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M> = u. ■g 
2 P    U , 1   (W 

2L 
|(ifr)2 + ( 

=   VLrrL   - 

ßV 

\|l + (k'): 

Kn 
ß'n 

2 

2)' 
-£\HM (oov^y 

d(Ur) 

f +  (k'): fß'Tf 
KO S^[l +<*')* 

(5*) 

where k' = —, and KQ and K^ are the modified Bessel functions of 

the second kind of argument  wl + (k ) . 
2 ' 

The function given by equation (5^) is plotted against k'  in fig- 
ure 8 for values of ß'r|/2. Values taken from this plot may be used in 
the numerical integration of the power spectra of the rolling-moment 
coefficient. 

Power spectrum of rolling moment.- The power spectrum of the rolling 
moment due to the horizontal components of turbulence acting on the wing 
has been determined by using the expression for Iu obtained in the 
preceding section and the four distributions of the parameter r(ri) given 
in table II. The integral of equation (29) has been evaluated numerically 
for all four cases of load distribution, and the resulting variations of 
the power spectrum with frequency and ß1  are plotted in figure 9-  In 
addition, the analytical solutions for the cases of rectangular and par- 
abolic distributions are given here and their numerical values were 
checked against those obtained by the numerical-integration process. By 
use of equation (^k), the solution for the rectangular case is found to 
be 
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$cz(
k') = 

3Ug2Lo0
2C1  

2      p2 

rtlP '0 
(k - 6i\ + Ti?) 

€ 
I P-Kl 

'ßV 
Ko dTl 

2l+ug
2LaD

2Clp
2 

rtljV 1 + (k'); 

a3   T    KQCX)  cbc + a2^a2 + 32^Ko(a) + 

l6a(a2 + U)K!(a)   - 6k (55) 

where a = ßJ\|l + (k')2 and k1 = —. The analytical solution for the 

parabolic distribution is given by 

%(k') 

240ug2Lao2c, 

7*U5a8 

^209a6 + 2%^hkah + 331,776a2] KQ (a)  + 

1 + (k')2 

(aT + 3,k2keP + 133,632a? + 663,552a)Ki(a)  + 

(aT + 63a5) f     KQ(X)  dx - 1,120a4 + 32,256a2 - 663,552 

(56) 

A comparison of the values obtained for equations (55) and (56) and 
plots of the results obtained by the numerical-integration process indi- 
cated no difference, and none is shovn in figure 9. 

It is significant to observe that very little variation exists in 
the power spectra of figure 9 for the four span loadings considered. 
However, as compared with the rolling moment due to vertical gusts 
(fig. 7), the rolling moment due to horizontal gusts is relatively small 
for small values of trim angle of attack. Although no exact expression 
for the ratio of the power spectra of the rolling moments due to ug 
and w„ may be given without including ß' and 7, it may be seen from 

figures 7 and 9 that, in general, 
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*Cz 

Wo 

Ur 

0.2 

«o2 
(57) 

where a,-, is given in radians. 

Calculations for Side Gusts 

For the side gust considered, the correlation function of the 
rolling-moment coefficient as given by equation (32) becomes 

$    (UT) = _E 1 
1 U2  \ 

[UT] 

2L 

UT 

(58) 

and the variation of this function with UT/L is, of course, equal to 
the variation of equation (*kL) with r, which is plotted in figure k. 

The power spectrum of the rolling-moment coefficient as given by- 
equation (33) with G(k') given by equation (^3) becomes 

$Cl(k') = 

2 
% VL i + 3(k')2 

[1 + (k')^_ 

(59) 

oiL The variation of the spectrum with frequency k' = — is shown as the 

G(k')  curve of figure 5. 

DISCUSSION 

The purpose of this section is to discuss the implications of the 
assumptions made in the analysis of this paper, the reasons for making 
these assumptions, and the application of the results. 
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Assumptions Concerning the Nature of Turbulence 

The turbulence was assumed to be homogeneous in order to make the 
problem stationary in the statistical sense and thus permit the use of 
the mathematical techniques developed for such problems.  In a practical 
sense, turbulence can be homogeneous only in a limited body of air. The 
assumption thus implies that the dimension of this body of air along the 
flight path is large compared with the distance traversed in the reaction 
time of the airplane. In the case of loads studies this reaction time 
is of the order of the time to damp to one-half amplitude, but, in the 
case of motion studies, the reaction time may be much larger. Obviously, 
the greater the body of air, the greater the reliability with which the 
loads and motions can be predicted (in a statistical sense) for one run 
through it.  In general, turbulence at very low altitudes, which may be 
influenced significantly by the configuration of the ground, and the 
turbulence in thunderstorms may not be sufficiently homogeneous for this 
type of analysis, but other types of turbulence are likely to be sub- 
stantially homogeneous over sufficiently large distances. 

Isotropy was assumed in order to permit the required two-dimensional 
correlation functions to be expressed simply in terms of the one- 
dimensional correlation functions. For sufficiently short wavelengths 
all turbulence is isotropic (see ref. "]),  but for long wavelengths it 
can be isotropic only if it is homogeneous (both in the plane of the 
flight path and perpendicular to it).  (The condition of axisymmetry is 
less restrictive inasmuch as it does not specify the variation of the 
characteristics of the turbulence in the vertical direction.)  In prac- 
tical problems, if the turbulence may be assumed to be homogeneous, the 
conditions of isotropy are likely to be satisfied sufficiently to permit 
the use of the approach presented herein for all but very long wavelengths. 
The wavelength at which this approach ceases to be valid depends on the 
size of the body of air under consideration, being longer for a large 
body. 

Taylor's hypothesis implies that the variation in gust intensity 
that prevails along the flight path at any instant will remain substan- 
tially the same until the airplane has traversed the given body of air. 
The required correlation functions for atmospheric turbulence are thus 
in the nature of space correlation functions (rather than time correla- 
tion functions) and have been considered as such. The statistical char- 
acteristics of the turbulence are then independent of the speed at which 
it is traversed.  Clearly, the validity of this hypothesis depends on 
the flying speed of the airplane and it would be expected that, at very 
low speeds, the hypothesis of Taylor becomes less valid and the results 
may be less accurate. On the basis of present knowledge, no definite 
lower limiting speed can be quoted. The effect of finite flying speed 
on the gust correlation function can be expected to be most pronounced 
for large distances, where the correlation is weak. Thus, the effect 
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on the various spectra is likely to be small and to occur at the longest 
wavelengths, where, as previously mentioned, the spectra are somewhat 
uncertain for other reasons as well. 

For practical purposes, the parameter L (the integral scale of 
turbulence) used herein is a largely fictitious quantity, inasmuch as 
it is, to a large extent, proportional to the values of the gust spectra 
for infinite wavelengths.  In view of the uncertainties in the values 
of the spectra at long wavelengths and the fact that the spectra in this 
region predominantly define the area under the integral, the parameter L 
has little physical significance. Therefore, at present, insufficient 
information is available to give an exact value for L to be used in 
connection with the numerical results calculated herein. However, on 
the basis of the measurements such as those of reference 13, a value 
of 1,000 to 2,000 feet appears to be appropriate for the conditions of 
the referenced tests.  It is desirable to obtain more information con- 
cerning the spectra of atmospheric turbulence under a wider range of 
conditions. More definite values could then be deduced by fitting meas- 
ured results by means of an analytical expression of the type used here. 
This expression could be used as a means of obtaining a value of L by 
extrapolation of the measured results to infinite wavelengths (zero 
frequency). 

Assumptions Concerning the Aerodynamic Forces 

The fundamental assumption concerning the aerodynamic forces is 
that they vary linearly with gust intensity.  This assumption implies 
that the ratio of the gust speed to the flying speed must always be 
fairly small; if the aerodynamic forces and moments tend to vary with 
gust intensity in a nonlinear manner, as the wing yawing moments do for 
all angles of attack and the other forces and moments do for high angles 
of attack, the ratio of gust intensity to flying speed must be very 
small - about l/30 or less. However, as previously mentioned, the wing 
yawing moments due to gusts are likely to be quite small, so that some 
error in them due to slight deviations from linearity is not likely to 
affect appreciably the results of an analysis of the lateral motion. 
Hence, for an airplane flying at small angles of attack and at speeds 
of about 200 knots or more, in continuous turbulence, the assumption of 
linearity should be valid; for flight in severe thunderstorms, it is 
not likely to be valid, and, for flight at high angles of attack, it is 
likely to be valid only for light turbulence. 

The rigidity of the wing, which was mentioned in the list of assump- 
tions, enters only indirectly into the problem considered herein. The 
results obtained here are valid whether the wing is rigid or not. How- 
ever, in the case of flexible wings (the term "flexible" being used to 
describe^wings with deformations which give rise to appreciable aero- 
dynamic forces), certain additional information is required.  (See ref. 6.) 
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This information may take the form of span influence functions y(j) 
modified by static aeroelastic effects, or may require certain cross- 
correlation functions or cross spectra betveen the gust forces and the 
dynamic forces, depending on the individual case. 

The assumption that the indicial-response influence function h(t,y) 
can be written as a product of functions of time only and distance along 
the span only is based on the reasoning of reference 6. This reasoning, 
in turn, is based on the observation that, according to the available 
information for the lift distributions due to sinusoidal motions (and, 
hence, those due to indicial motion), the lift distribution tends to be 
substantially invariant with frequency (or time) except for an overall 
factor.  Inasmuch as this information is confined to unswept wings, this 
assumption may not be valid for swept wings. 

Application of the Results 

In this paper the rolling moments and yawing moments have been cal- 
culated for a wing due to the u, v, and w components of turbulence. 
If the turbulence is isotropic, these components are statistically inde- 
pendent at a point.  In any practical application, all three components 
are always present and the wing rolling and yawing moments due to the 
combined action of the three components must be known.  In isotropic 
turbulence, the cross correlations between u and w and between v 
and w in the horizontal plane are zero, although u and v have a 
nonvanishing cross correlation. Thus, the moments due to v and w can 
be added directly, but, if horizontal-gust effects are to be taken into 
account, not only the moments due to u calculated herein but also the 
moments which arise from the cross correlation between u and v should 
be added to the others. However, there is reason to believe that the 
horizontal-gust effects on the lateral moments are generally very small, 
so that neglect of this cross-correlation effect is usually justified. 

The rolling and yawing moments due to Ug and wg considered herein 

are only those contributed by the wing but, inasmuch as the lateral moments 
contributed by the fuselage and tail as a consequence of these two com- 
ponents of gusts are generally very small, the results given here may, 
in general, be used to represent the lateral moments on a complete air- 
plane due to these two gust components. 

Similarly, the rolling and yawing moments of a complete airplane due 
to the v-component of gusts depend not only on the wing contribution 
considered here but also on the contribution of the vertical tail, 
which can be calculated in a straightforward manner. For instance, a 
method of calculating the yawing moments and side force on a fuselage 
and vertical fin due to side gusts is found in reference 17. 



3^ NACA TN 3864 

Although the contribution of the horizontal component of gusts to 
the lateral moments appears to be small compared with the other two com- 
ponents, it should be kept in mind that the effect of this component 
increases as the square of the trim angle of attack.  (See eq. (57)0 
For conventional airplanes in the landing configuration and for verti- 
cally rising airplanes in the transitional stage, the effects of hori- 
zontal gusts may well be predominant in calculations of the forces, 
moments, and motions due to turbulence. 

CONCLUDING REMARKS 

The correlation functions and power spectra of the rolling and yawing 
moments on an airplane wing due to the three components of continuous 
random turbulence have been calculated. The rolling moments due to the 
longitudinal (horizontal) and normal (vertical) components depend on the 
spanwise distributions of instantaneous gust intensity, which were taken 
into account by using the inherent properties of symmetry of isotropic 
turbulence. The results consist of expressions for the correlation func- 
tions and spectra of the rolling moment in terms of the point correlation 
functions of the two components of turbulence. 

Specific numerical calculations were made for a pair of correlation 
functions given by simple analytic expressions, which fit available 
experimental data very well. Calculations were made for four lift dis- 
tributions and the differences in the results calculated for these dis- 
tributions were small. By comparison with the results calculated herein, 
the results of previous analyses for which it was assumed that random 
turbulence along the flight path and variations of turbulence across the 
span were linear have been shown to be valid only when the ratio of the 
span to the integral scale of turbulence (about 1,000 to 2,000 feet) is 
small. 

A comparison of the power spectra of the rolling moments due to 
horizontal gusts and those due to vertical gusts showed that the vertical 
gusts were predominant at small values of trim angle of attack (or trim 
lift coefficient); however, the relative effect due to horizontal gusts 
increased as a function of the square of the trim angle of attack. 

The rolling moment due to lateral (side) gusts, which is small, was 
expressed in terms of the instantaneous value of the gust at representa- 
tive points on the wing, so that the effect of spanwise variation in gust 
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intensity was ignored. The yawing moments were considered to be propor- 
tional to the rolling moments, the constants of proportionality being 
given by simple aerodynamic relations. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., September 6, 1956- 
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APPENDIX 

EVALUATION OF THE ELLIPTIC INTEGRAL WEIGHTING FUNCTION 

The evaluation of the integral weighting function T(T\)     involves 
the integral given by equation (21): 

pl-T) 

r(ri) = J       7(y^) 7(y!*+Ti) ay^ 

For the case of the elliptic distribution of the additional span loading 
factor, 

7(y») = ^ y*Ji - y*2 

and the integral weighting function to be evaluated becomes 

,2 ,1-n 
n) = (f) XJ (yi*)(yi*+# - »I*2!1 - {*i*+^ **i 

Under the substitution 

2yx* + Tl  2y1* + TJ 
x =  =   

2 - TJ 

the integral may be written as 

r(T1) = (?) (TTJL 
(8X

 ' n)(5x + W1 - ^8x " T|)2/1" ^6x + ^2 to 
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Inasmuch as    1 - z^ =  (l - z)(l + z), 

r(^ ■ [f) ff^MC (52*2 - ^-iBx+i^+iBx-H/f-iBx-if+"5x+^ dx 

52f/2 „\      pl 

* / \    8 
52x2 1 + i V)   - i 5x il)      +  i 5X 

2   /        2 
1 - I ,)   - ± 6x 1 + i , I  + 1 Sx dx 

=(f)M/;(' ,2X2 - ,2  d + 1   Ux . i , ,  fi 1 + 
2 'H \     2 + n/\     2 - v\     2 - V\     2 + 1 

ox    \ A   .     &x    \ A 5x     \ / 8x 1 + —    dx 

With the notation k =  = —-—-, 
2   +   T] 2   +   T) 

r(T))   =   ^|(2   -   Tj)2(2   +   T))     / (2   -   T))2X2   -   T)2   J(l   -   kx)(l  +   X)(l   -   X)(l  +   kx)    dx 

%2  -  T,)
2

(2 + T,) 
jt2 u0 

(2 - n)2x2 - T)2 J(l - k2x2)(l - x2) dx 

where the integrand may be seen to be an even function of the variable x. 
Multiplying numerator and denominator by the radical and expanding yields 

r(n) = 2£<2 - T))2(2 + T,) <i?{2 - 1) x6 dx 

'0    |/(l - k2x2)(l - X2 
?-k

2[(2 + ,)
2
+(2-T1)

2 + T12]^1 x4 dx 
0     P.  -  k2x2)(l - x2) 

(2 - nf + ,2 + n2k2] ^X x^ dx dx 

0    ^(l -k2x2)(l -X2) J0    ^ . ^(i . x2) 

The integrals may be recognized as elliptic integrals in powers of x^11 

for which the closed-form solutions may be found in reference l6,  for 
example.  In terms of the standard elliptic integrals (in Jacobi's nota- 

tion) of modulus k = —-—L 
2 + TJ 

K(k) = f 
Jo 

dx 

^(1 - x2)(l - k2x2) 
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which is defined as a complete elliptic integral of the first kind, and 

r11 - k2x2 
E(k) =  / 1/  dx 

J0 I   1 - x2 

which is defined as a complete elliptic integral of the second kind. 
Tables of these integrals may be found in most mathematical handbooks 
as well as in reference l6. In terms of these integrals, the solution 
for the integral weighting function is found to be 

r(n) = ^{2 - T!)2(2 + TO <* 
rt2 

k2(2 - TI)' 

15kc 
8 + 3k2 + WOlC(k) - (8 + Tk2 + Sk^ECk) 

k2 .2  ,_   ,2   2 (2 + TI) + (2 - n) + n£ 

3^ 
2 + k2)K(k) - 2(l + k2)E(k) 

[(2 - n)2 + n2 + n2^2] [K(k) - E(k)j - ri2K(k) 

^12 

15«£ 
(2 + Ti) WT)3 . 3T) - lWk) + (k + 9n2 -  T)^E(k) 
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TABLE I 

VARIATION OF    y(y*) 

Distribution /(y*) 

Rectangular 

Elliptic 

Parabolic 

Triangular 

6y* 

ZL  y*^   _   y*2 

i5y*U - y*2) 

2%*(l -  |y*|) 

TABLE II 

INTEGRAL WEIGHTING FUNCTION r(i\) 

Distribution r(n) Limits 

Rectangular 6(k - 6T) + T]3) 0 =  TJ 5 2 

Elliptic 512 (2 + ,) 
15*2 

(i+ + 9-n2 - T 

VT|(T]2 

|ME(k) 

-  3TI  -  l)K(k)   + 0 ^ Ti ^ 2 

Parabolic ig(64 - 336^2 + 280^3 _ k2i]5 + rf) 
28 

0^T,<2 

Triangular 

—(2 - 10^2 + 5T13 + ^ - 3n5) 
15 

—(8 -  207! +■ 10T)2 + 5^3 -  5^ + TJ5) 

15 

o 5 T) < l 

1  <   T)   <   2 
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(a) Wing passing through three-dimensional turbulence. 

«—*- •——       Longitudinal components,  f{r) 

Lateral  components, g(r) 

-•  r 

1 i 
(b) Components of turbulence as a function of distance r. 

Figure 1.- Sign convention and stability axes of a wing passing through 
a turbulent velocity field. Arrows denote positive direction, where 
applicable. 
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Ay 

ug(x,,y|) 

(a) Horizontal gust components. 

W/'Wft 

(b) Side gust components. 

Figure 2.- Schematic drawing of the relationship between the components 
of horizontal and side gusts at any two arbitrary points. 
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Figure 5.- Power spectra of lateral and longitudinal components of 
isotropic atmospheric turbulence. 
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(a) Rectangular span loading. 

Figure 7.- Power spectra of rolling moment of wing due to vertical gusts, 
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(b) Elliptic span loading. 

Figure 7.- Continued. 
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(c) Parabolic span loading 

Figure 7.- Continued. 
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.00001 

(d) Triangular span loading. 

Figure 7.- Concluded. 
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Figure 8.- Variation of horizontal-gust weighting parameter ^^ for 

ug
2L 

a range of values of    ßT]/2. 
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(a) Rectangular span loading. 

Figure 9.- Power spectra of rolling moment due to horizontal gusts, 
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(b) Elliptic span loading. 

Figure 9.- Continued. 
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(c) Parabolic span loading. 

Figure 9-- Continued. 
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(d) Triangular span loading. 

Figure 9.- Concluded. 

NACA - Langley Field, Va. 
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